电源解决方案如何影响系统可靠性?
电源解决方案以多种方式影响系统可靠性,有些方式比其他方式更明显。首先,系统通常需要启动才能正常运行,加上电子或电气系统在没有电源的情况下也无法工作,因此仅仅是能够启动就是可靠性的核心衡量标准。当然,这也是许多人会先想到的地方。除了启动运作之外,系统的性能还与电源的质量有关。换句话说,必须满足每个系统电压轨的特性和规范才能被认为是可接受的质量,这样才能满足负载的需求,从而保证电源质量不会抑制负载性能。电源的电压调节能力(有不同的输入电压或输出负载的变化)、在不影响电源稳定性或超过可接受的限度的情况下可以适应怎样的瞬态或负载阶跃、输出电压升高的速度或平稳度,以及需要满足哪些安全法规或标准才能获得合法运输产品所需的报告或认证,这些都跟电源质量有关。
如上所述,电源调节不但适用于输入也适用于输出。即使输出端圆满完成工作,反射回输入端的噪声也会影响共享同一线路或总线的其他设备。如果这种交叉干扰在许多单元和系统之间扩展,影响甚至会对设施的可靠性或稳定性产生不利影响。AC/DC 电源的功率因数校正 (PFC) 或最大总谐波失真 (THD) 水平是为了解决这一现象,但与终端系统的性能无关。
由于电气系统所有部份都要有电才能运行,因此许多机电组件将电源与负载在物理上连接,这往往是常见的故障点,成为系统可靠性的优化瓶颈。在对电源解决方案进行故障分析时,连接器、线束、电线和焊点通常是要先被调查的罪魁祸首。任何可以物理移动的东西都归在此类,例如开关和风扇。
滤波器组件是电源的物料清单 (BOM) 所关注的另一个主要项目,即电容器、变压器和电感器等储能设备。电容器的可靠性通常取决于电解质材料的状态,电解质材料通常为液态,会随着时间的推移以及温度和电应力(即纹波)的变化而蒸发甚至脱气。除了温度和电应力(磁芯饱和)以外,磁性组件的结构本就复杂而且若是人工组装而成,这些都可能成为可靠性弱点。
检视所有电源和系统重迭的重点项目也是一个很好的开始来减轻每个项目的相关风险。除了将这些内容列出以外,此练习还提供了一些很好的线索,提醒在不断追求提高系统可靠性的过程中要将设计和验证重点放在何处。系统可靠性可以用许多不同的方式表示,这些方式通常透过检视上述可靠性瓶颈的故障统计数据来计算并预测寿命或失效(参见「平均故障间隔时间」(MTBF) 和「平均故障时间」(MTTF)) [1]。
如上所述,电源调节不但适用于输入也适用于输出。即使输出端圆满完成工作,反射回输入端的噪声也会影响共享同一线路或总线的其他设备。如果这种交叉干扰在许多单元和系统之间扩展,影响甚至会对设施的可靠性或稳定性产生不利影响。AC/DC 电源的功率因数校正 (PFC) 或最大总谐波失真 (THD) 水平是为了解决这一现象,但与终端系统的性能无关。
由于电气系统所有部份都要有电才能运行,因此许多机电组件将电源与负载在物理上连接,这往往是常见的故障点,成为系统可靠性的优化瓶颈。在对电源解决方案进行故障分析时,连接器、线束、电线和焊点通常是要先被调查的罪魁祸首。任何可以物理移动的东西都归在此类,例如开关和风扇。
滤波器组件是电源的物料清单 (BOM) 所关注的另一个主要项目,即电容器、变压器和电感器等储能设备。电容器的可靠性通常取决于电解质材料的状态,电解质材料通常为液态,会随着时间的推移以及温度和电应力(即纹波)的变化而蒸发甚至脱气。除了温度和电应力(磁芯饱和)以外,磁性组件的结构本就复杂而且若是人工组装而成,这些都可能成为可靠性弱点。
检视所有电源和系统重迭的重点项目也是一个很好的开始来减轻每个项目的相关风险。除了将这些内容列出以外,此练习还提供了一些很好的线索,提醒在不断追求提高系统可靠性的过程中要将设计和验证重点放在何处。系统可靠性可以用许多不同的方式表示,这些方式通常透过检视上述可靠性瓶颈的故障统计数据来计算并预测寿命或失效(参见「平均故障间隔时间」(MTBF) 和「平均故障时间」(MTTF)) [1]。