AC/DC 和 DC/DC 电源转换器的标准电源解决方案和应用

Designers of power supplies understand that using high-quality AC/DC power supplies, DC/DC converters, and switching regulators in their design architectures leads to a high-reliability end product that users will appreciate. There are numerous design requirements for compact power supplies in a wide variety of applications, including medical, test & measurement, industrial, mobility, automation, Internet of Things (IoT), and high power density, among others.

Electronic devices plugged into an outlet require a high-quality AC/DC converter to convert the AC power input into DC power output. For most designs, semiconductor devices operate on DC power. DC/DC converters are typically selected to power designs with a regulated and stable voltage, especially when the input source is fluctuating. This type of power converter is designed with high-frequency switching circuits, coupled with inductors, switches, and capacitors that help reduce the switching noise in the system. The result is a solid and stable regulated DC voltage output.

DC/DC Converters: A Basic Overview

DC/DC converters come in various types, each designed to address specific voltage regulation needs in electronic systems. Let’s explore the different types of DC/DC converters, examining their key functions and features.

The Buck Converter

The step-down (buck) converter can convert a higher DC input voltage into a stabilized, but lower, DC voltage at its output. See Figure 1.

A modification to the standard pinout met the customer requirement for increased clearance and creepage

Fig. 1: An example of a simple DC/DC Buck Converter Voltage Regulator (Image from Reference 1)


The advantage of buck converters is that losses are low, enabling efficiencies of over 97%. The switching frequencies range into the hundreds of kHz. A good power density architecture is achieved using smaller inductors along with a fast transient response capability. During its switching cycle, when the FET switch is disabled, the output level drops to zero. This enables very low no-load power consumption. Taken together, these advantages make the buck regulator an attractive replacement for a linear voltage regulator in a variety of applications.

Buck converters do come with a disadvantage: The Pulse Width Modulation (PWM) regulator feedback circuit needs to have a minimum output ripple to reach proper regulation. This is because the regulation occurs cycle by cycle. In addition, the output ripple depends on the duty cycle, which is a maximum at 50%. In this case, it would not be possible to achieve ripple and noise down to μV levels; this can only be achieved by using linear regulators that are non-switching.

If a designer requires a cleaner power supply, a linear regulator can be placed after a buck regulator, to achieve the best performance of both topologies. This is made possible because the linear regulator Power Supply Rejection Ratio (PSRR) greatly reduces ripple/noise at its output.

The Boost Converter

A step-up, or boost, converter power design converts a lower input voltage into a stable and solid higher voltage at the output. Figure 2.

An example of a simple DC/DC boost converter regulator

Figure 2: An example of a simple DC/DC boost converter regulator (Image from Reference 1)


The advantage of using a boost converter architecture is that the output voltage can be varied with the mark-space ratio (defined as the ratio between the high time and the low time, or the duty cycle). For example, a 50% duty cycle occurs when the voltage high time is equal to the voltage low time of the PWM signal in order to be equal to, or “boosted” above, the input voltage VIN.

This functionality allows the boost converter, for example, to boost a low battery voltage output to a more useful higher-voltage level. However, a boost ratio that is more than two or three times the input would make feedback stability more difficult to maintain at a solid level. In addition, because the input current pulses would increase proportionally, compared with the boost gain, a converter that triples its input voltage would draw three times its input current. This level of pulsed input current can even lead to increased EMI, and to voltage-drop levels at the battery input leads.

Another disadvantage of the boost converter is that its output cannot be switched off without adding a second switch, placed in series with the input. This is because disabling the PWM controller alone would not disconnect the load from the input.

Power designers should not allow a boost converter’s input voltage to rise above its output voltage. In such a case, the PWM controller could then keep S1, in Figure 3, open continuously. The input and output would be connected directly from L1 and D1 without regulation. Highly damaging currents may flow that could quickly damage the converter along with its load. Designers who cannot avoid this condition must employ a replacement topology that permits both buck and boost operation.

Buck-Boost (Inverting) Converter

The buck-boost converter (also known as flyback converter) can convert an input voltage to a regulated, negative output voltage, which can go higher or lower than the absolute value level of that input voltage. The image in Figure 3 shows a simplified schematic of the Buck/Boost converter.

Simplified schematic of a Buck/Boost regulator

Figure 3: A simplified schematic of a Buck/Boost regulator (Image from Reference 1)


The input voltage of a buck-boost converter may be higher or lower than the regulated output voltage. That capability is useful for applications that may require a stabilized voltage output from a battery that can have a terminal voltage between 9V (when discharged) and 14V (fully charged). Buck-boost converters can help stabilize the outputs of photovoltaic cells. Solar cells are able to deliver high voltage and current when in bright sunlight but revert to low voltage and low current when the sunlight is blocked or diminished. As the voltage/current relationship changes in such an example, a buck-boost converter can be quite useful for Maximum Power Point Tracking (MPPT) because the input/output voltage ratio can be continuously adjusted.

The greatest disadvantage of a buck-boost converter is its inverted output voltage. If used with a battery, the output voltage inversion is irrelevant because the battery supply can be left floating and the -VOUT may then be connected to ground in order to yield a positive-going output voltage. Another disadvantage is that the switch S1 is without a ground connection. This means that a level translator is needed in the PWM output circuit, a factor that can quickly add design cost and complexity.

DC/DC Converter Applications

DC/DC converters have numerous applications in the electronics industry. Let’s discuss the primary application areas.

Automation

In general, the main requirement for using DC/DC power supplies in automation applications centers on isolation. Isolation would ensure that the power design avoids any interference with other equipment. The DC/DC converter should also be designed into a system, taking care to avoid any ground loops or potential differences that may disturb the operation of the automatic control system.

For example, isolated DC/DC converters might be used in automation to help break up ground loops. This would allow separation of noise-sensitive parts of a circuit from the source of that noise. A regulated and isolated DC/DC converter can help minimize electrical noise using that isolation. The choice of an isolated and regulated DC/DC converter for voltage conversion would help prevent electrical noise isolation, and ensure immunity to line surges and dropout/dips.

Internet of Things (IoT) and the Industrial Internet of Things (IIoT)

The IoT is consumer-oriented while the IIoT, a subset of the IoT, is industrial-oriented. The IoT and the IIoT are systems of inter-related objects, connected on the Internet, which make it possible to collect, share, and transfer data over wireless networks with virtually no human intervention. These two systems feature distributed intelligence, countless interconnected sensors and actuators, along with decentralized control.

The IIoT is made up of devices that collect large amounts of data compared to IoT devices, which generate a relatively lower volume of data. An IIoT example is a single turbine compressor blade that can generate more than 500Gb of data every day. Beyond connectivity, IoT and IIoT are all about the information these devices can collect, leading to powerful insights. Typically, rugged, isolated DC/DC converters are needed to power IIoT sensors, such as those monitoring the condition of industrial machines. Large power surges may occur with the starting and stopping of heavy machinery. As a result, isolated DC/DC converters with isolation of 3kV to 4kV are required to protect the sensors.

Creating smart spaces, the IoT and the IIoT leverage sensors in environments/objects that can communicate to gain intelligence. IoT examples include a business setting that has lighting with smart capabilities to adjust to ambient light levels, and even to the number of people present. Within the IoT, machines can monitor their own functionality, or adapt to daily routines in homes. The IoT automatically saves energy while providing human comfort. The IoT also needs power designers that choose cost-effective and high-power-density DC/DC power supply modules. In this space, applications include smart offices, which are filled with intelligent sensor nodes. Energy harvesting is another excellent application that leverages DC/DC converters.

Power supplies for the IoT and the IIoT need to be highly efficient, at low and full load levels. DC/DC power supplies designed to handle fast transient and dynamic load currents are best suited for these environments. Such power supplies must be physically compact, reliable, and cost-effective. These DC/DC power supplies will be as ubiquitous as the sensors, processors, radios, and actuators that they are designed to power.

See this video entitled “What is the ‘Internet of Things”.

Industrial Power

In industrial applications, fork-lift trucks and other materials-handling equipment use traction batteries rated from 320V to 600V. A series of on-board power supplies can optionally generate 24V or 48V from the high-voltage battery rated at 4kW with high efficiency. A 19-inch-rack product version can be baseplate- or liquid-cooled.

Electric Vehicles (EV)

With the availability of fossil fuels decreasing, electric vehicles (EVs) have surged as a solution to reduce fossil fuel dependence and help sustain natural resources.

EV development is characterized by:
  • increasing battery capacity
  • faster charging
  • longer lifespan
  • improved power density

As EVs increasingly populate our roads, these cars, buses, and trucks need more charging stations, which are being deployed along major roads and highways as well as in local areas. EV charging stations’ power levels are fast reaching several kW of power. DC/DC converters with increased isolation and high insulation strength are critical to these charging stations. DC/DC converters are used to provide regulated power to the network interface of the EV charger. This component ensures reliable communication between the EV and the charging station, as well as connectivity to the Internet.

Railway

A key application for industrial high power DC/DC converters is in railway applications. This sector includes applications for railway rolling stock, on-board and trackside applications, industrial applications, high voltage battery-powered applications, and distributed power supply architectures. Typically, DC/DC converters are used in railway environments to convert DC battery voltages to a lower voltage for use in various control and energy systems. Railway rolling stock designs have a DC power distribution system that uses batteries that are deployed to maintain electrical power in the event a generator fails.

For these applications, DC/DC converters must be designed and constructed in accordance with EN 50155 to ensure that harsh environmental conditions do not affect operation. These DC/DC converters are exposed to extremely tough conditions such as heat, frost, vibration, and mechanical impact, all of which can cause serious damage to electronic components. Engineers require DC/DC converters that can withstand these potentially catastrophic conditions and are certified for railway applications.

High Power Density

The power density of a DC/DC converter is a measure of the output power divided by the volume of the DC/DC converter, expressed as watts of output power per cubic centimeter. A high value, meaning more power for a given volume, is a design advantage.

Power in Small Packages: 3D Power Packaging for Low-Power DC/DC Converters

Low-power, non-isolated DC/DC switching regulators are cost-effective solutions that meet increasing demands for better performance with improved power density. Their packages need to be small so that they can compete with discrete designs. Non-isolated DC/DC designs face the challenge of being highly efficient while maintaining a small form factor. The use of faster switching techniques, such as in wide bandgap designs, helps reduce size while maintaining strong efficiency.

RECOM achieves high power density with an over-molded “flip-chip-on-lead frame” construction. EMI is reduced due to smaller switching current loops in the design.
To increase power density with 3D Power Packaging, watch the video ‘Big power in small packages’.

High Power Density DC/DC Converters for Industrial and Electro-Mobility Applications

The RP and RPA series are board-mounted DC/DC converters with a power rating of 30W to 240W and a power density of up to 4.5W/cm3. This is one of the highest power densities available for this class of DC/DC converters.

A major reason for the excellent power density is that these devices use planar transformers in their design. These transformers reduce the overall package size without compromising efficiency or output power. This construction method supports a fully automated production process, which leads to high reliability and excellent cost-effectiveness. These two series are best for space-constrained industrial, test-and-measurement, transport, railway, and other demanding applications that require a 4:1 input voltage range and even an excellent 10:1 input voltage range.

Medical

Medical applications are high risk by nature. Electronic equipment, especially those containing power electronic devices, must meet extremely high standards of safety and reliability. Medical power supplies need to have properties that meet the necessary standards for medical use in hospitals and other medical environments.

Medical-grade DC/DC converters require reinforced isolation with two means of patient protection (2MOPP), low leakage, and a creepage/clearance distance greater than 8mm. Reinforced isolation provides an added level of safety beyond standard isolation, to meet the medical safety standard ES/IEC/EN60601-1 3rd Ed. High isolation and low noise are critical to medical-grade DC/DC converters. Since patients or operators are always involved with equipment containing such devices, they must be protected in the event of a fault.

High-Grade Medical DC/DC Converters

High-grade medical DC/DC converters are designed to be safe for humans. They meet either type BF (Electrically connected to patient but not directly to heart) or CF (Electrically connected to the heart of the patient) environments. These can be used in incubators, ultrasonic devices, or defibrillators. The power supplies meet the 2MOPP (Means of Patient Protection) spec, which involves high isolation and a robust insulation capability. The internal transformers have reinforced insulation and help limit the leakage current that may reach the patient.

Some medical-grade DC/DC converters are regulated and have a 250VAC working voltage. Additional specifications may include a 5kVAC to 10kVAC/1 minute reinforced isolation and leakage currents as low as 2µA. There may be other options that can reduce standby power to milliwatt levels.

A 1W converter in a very compact SIP-7 package is currently the smallest complete medical supply on the market. Midpower ranges are available, too. These DC/DC converters are cost-effective at 3.5W, 5W, and 6W. They come in an SMD or THT package, with an input voltage range of 2:1, and the output voltage can be 3.3V, 5V, 9V, 12V, 15V, or 24V, depending on the series.

经济型医用 DC/DC 转换器

这些 DC/DC 转换器具有增强隔离,250VAC 连续工作电压,爬电距离/电气间隙大于 8mm,并提供 2 x MOPP。它们还配有高达 8kVDC 的扩展增强隔离,适用于高压应用。

这些转换器具有关键医疗应用所需的所有重要功能,同时降低了这些模块化解决方案的成本。它们提供引脚和表面安装设备。

DC/DC 转换器选型注意事项

隔离型 DC/DC 转换器可以具有以下优点:
  1. 隔离输入和输出之间的接地意味着直流电源的接地方案可以与输出上的负载有所不同
  2. 设计人员将能够“映射”输入端(相对于输出端)上各种不同水平的直流电压
  3. 如果这些转换器的输出端电容非常低,则可以更容易、更安全地将多个隔离型 DC/DC 转换器并联放置在同一条直流总线上
非隔离型 DC/DC 转换器具有以下优点:
  1. 它们的直流输入和输出连接到相同的电位。包括降压、升压或降压-升压 DC/DC 转换器。

双向 DC/DC 转换器

双向 DC/DC 转换器在许多新应用(包括汽车、服务器和可再生能源系统)中是一种相对较新的架构。低压双向 DC/DC 转换器通常是非隔离型。

双向 DC/DC 转换器的三个关键应用是汽车、服务器和可再生能源系统。

AC/DC 转换器概述

未稳压 AC/DC 转换器电源示例

图 4:未稳压 AC/DC 转换器电源示例(图片来自参考 2)


图 4 中的变压器有两个 115V 初级绕组,通过输入电压选择器开关并联或串联。两个串联的 6V 次级绕组产生额定 12VAC 输出,该输出由桥式整流器 BR 整流,然后由输出电容器 C 进行直流平滑。可以提供大约 14VDC 的典型输出电压。全桥整流器采用四个二极管典型配置。

AC/DC 转换器应用

AC/DC 转换器适用于许多关键应用,在本节中,将讨论 AC/DC 转换器的主要应用领域。

医疗

如果电子设备不直接与患者接触并且仅由训练有素的操作者进行处理,则归入 MOOP(对操作者的防护措施)类别,表示这类电子设备通常只需要满足 60950-1 和 62368-1 ITE 标准规定的实验室环境下的要求。

医疗电子设计使用患者保护措施 (MOPP),这是由全球标准组织制定的电气安全标准 IEC60601-1;这些组织包括美国国家标准协会 (ANSI)、加拿大标准协会和欧盟委员会。MOPP 安全标准规定了医疗电气设备的基本安全要求。

AC/DC 电源 的医疗应用,通过电源供电医疗应用的 2 x 患者保护措施 (MOPP) 安全认证。最高级别的安全保护源于使用 2 x MOPP。请注意,一些电源制造商通常会强调其电源符合医疗批准,但未说明设备符合 1 MOPP 还是 2 MOPP。

这些紧凑型医疗级电源具有通用交流输入电压范围、4kVAC 隔离、低待机功耗、有源 PFC (> 0.95),并且不需要最小负载。

查看此 播客 了解更多详细信息

自动化

自动化是一项使用传感器、执行器和反馈技术的技术,这些技术可以在没有连续控制的情况下发挥作用。隔离型本地电源是为传感器/反馈/执行器控制系统供电的电源架构的一部分。

自动化技术中的电源是指为传感器、评估单元和执行器提供 AC/DC 电源所需的器件和模块。从市政电网提供的电压被转换为适当的电压和功率,该电压和功率需要施加到传感器和执行器,以确保它们在系统中的重要操作。

这些电源通常相互隔离,以便来自交叉干扰、接地回路和电位差的干扰不会对自动控制系统造成干扰。

物联网 (IoT) 和工业物联网 (IIoT)

工业物联网是物联网的一个子集。它们共享传感器、连接、云平台以及分析等通用技术。

借助多个/互连传感器和执行器以及分散控制,物联网可实现分布式智能。传感器是指定空间、环境或物体的一部分,通过增加能够通信的智能传感器,可以将空间、环境或物体“智能化”。

为了向物联网供电,设计者使用具有待机低功耗模式的高效 AC/DC 电源。应用领域包括具有大量智能传感器节点和能量采集功能的智能办公室。

接下来介绍物联网应用对电源供电 AC/DC 电源的要求。

AC/DC 电源需要低功率型号,此类应用通常只需要几瓦的功率。电源的尺寸应该很小,以满足紧凑型物联网传感器的狭小空间限制。AC/DC 电源还应该能够处理负载电流的较大范围变化,因为物联网节点将定期从活动模式切换到睡眠模式。

AC/DC 转换器需要具有“超低空载功耗”这一重要特征。为了在国内外、商业和工业环境中为系统供电,这些 AC/DC 转换器还需要满足全球认证要求。这些电源需要具有极高的性价比,它们的应用非常广泛。观看标题为“什么是‘物联网’”的 视频

家庭自动化、智能家居和智能办公

智能联网的智能家居和智能办公室通常要求控制系统具有大量“始终开启”的低功率节点、执行器和传感器。用于家庭自动化的经济型 AC/DC 电源需要能够以非常低的待机功耗(例如仅几十毫瓦)全天候为智能建筑基础设施供电。这些 AC/DC 电源还必须具有超宽的输入电压范围和完全家用 (IEC/EN60335-1)、CE (LVD+EMC+RoHS2) 和工业安全认证 (IEC/EN/UL60950)。

家庭自动化、智能家居和智能办公室中的 AC/DC 电源需要具有小巧紧凑的尺寸,以便通过组装技术轻松安装在配电板上或配电板外。这些电源还必须能够提供具有增强隔离的本地直流电源,该电源将具有稳定可靠、可调节、防短路和过载保护等特性,用于智能家居自动化应用的供电。

设计者可以使用 1W 到 20W 转换器实施多种安装方案,3W 到 30W 转换器必须安装在标准嵌入式壁挂盒中。

这些 AC/DC 转换器还需要具有低待机功耗:低至 35mW(该值低于 欧盟委员会欧洲生态设计指令 的限制)

工业自动化

工业用 AC/DC 电源转换器 通常用于电池充电。

三相交流输入电池充电器的额定功率通常为 3.2kW(RMOC3200 系列,直流输入高达 800V)和 5kW(RMOC5000 系列),必须能够级联并达到 20kW。这两个系列都具有 24/36/48/72/96/110 V 标称输出。

SD2800 系列在标称电压为 44V 或 24V 的三相交流输入电压下工作,输出电压分别为 28V 或 14V,功率分别为 2.8kW 和 1.4kW

SAB10000 系列可在三相交流输入(20VDC 输出)或 600VDC 标称输入电压(24VDC 输出)下以 10kW 的功率为电池充电,但同时也支持双向工作,确保电池电荷可以返回到交流电源。

模块化独立功率因数校正“前端”可输出 800W,1600W 和 3200W(单相交流输入)功率和 4kW(三相交流输入)功率。这些产品可提供采用 19" 机架安装、开放式框架或机箱安装的型号,也可根据客户要求定制。

高功率密度

功率密度是一个用于衡量单位体积功率输出的指标。该指标在电源中非常重要,尤其是在空间有限的区域。

效率是功率电子设备领域的首要问题。提高电源效率可以达到提高功率密度的目的。提高功率密度的一个可靠方法是减小组件尺寸。设计者应尽可能选择小尺寸电容器、电感器、变压器和散热器,以满足设计需求。

高端服务器和电信设备需要最高效率(约 99%)和高功率密度 (73 W/in3)。在此类应用中使用 AC/DC 转换器。

工业

现代工业需要 AC/DC 转换器的尺寸更小、占用空间更少和功率密度更高。随着开关控制器、拓扑结构和组件技术的进步,使得 AC/DC 电源的功率密度翻倍。新设计必须提高安全性、可靠性、效率和性能,才能具有竞争力。

设计者必须清楚 AC/DC 转换器支持的输入电压范围。在西半球国家的大多数行业中,交流电源的输出范围从标称 100VAC 到 277VAC,以便在全球范围内使用。

至关重要的是,AC/DC 转换器在整个负载范围(从满负载到轻负载,甚至到空载)都能有效工作。

大多数 AC/DC 转换器都已通过 UL/IEC/EN 标准的国际安全认证,并附有认证机构 (CB) 报告。节能对客户来说至关重要,许多应用都会自动切换到待机状态,以降低功耗。

测试和测量

在测试和测量领域,设备的应用范畴可以从桌面产品到服务器机架安装。此类系统需要交流输入电压,该电压可以从标称 90VAC 到 277VAC,对于某些工业应用,所需电压通常要高出几倍。

经常将功率范围为 3W 至 20W、安装在 PCB 上的低功率 AC/DC 转换器设计到这些系统中。如需更大功率,例如从 40W 到 550W,设计者可以选择机箱安装。

测试和测量 环境中,在没有风扇环境的情况下运行通常具有挑战性。针对这种环境选择的所有 AC/DC 转换器解决方案都必须能够在高温环境下提供有效功率而无需强制风冷。

我们推出了新增基板冷却功能的 230W 和 550W 产品。

根据 IEC/EN 61010、IEC/EN 62368、IEC/EN 60601 和 EN 60335 的要求,可获得不同终端应用环境的安全认证。

优质 AC/DC 转换器需要在不使用任何附加组件的情况下满足电磁兼容性 (EMC) 标准。所有 AC/DC 设备都需要具有低电源泄漏电流,这一点在测试和测量应用中至关重要,尤其是在医疗环境中。需要灵敏测量的应用将需要低输出噪声 AC/DC 电源,对于许多测试和测量系统的设计者而言,我们的产品具有显著优势。

交通和电动交通

AC/DC 转换器能够向需要从交流到直流转换过程的电子设备提供电源。在本节中,我们将讨论 AC/DC 转换器在交通和电动交通中的应用。

交通与移动性:“交通”是指交通技术和设备,本质上来讲,它们是实现移动性的“螺母和螺栓”。移动性是交通的保护伞,确保螺母和螺栓内的所有组件是否能够很好地协同工作。

电动交通

电动交通的典型应用包括:电动汽车 (EV)、当今市场上非常流行的所有类型的踏板车以及类似的其他小型车辆。这些设备需要用于设备电机驱动和任何辅助设备的电池充电器以及车载电源转换器。

电动汽车要想成功取代汽油车,需要一个更加庞大的充电站和插座网络。以下是快速部署充电站的一个实例:目前美国道路沿线只有大约 113600 个用于插电式电动汽车的充电插座,其中 36% 的充电插座位于加利福尼亚州。

目前正在努力制造速度更快的充电器,以将现有充电时间降至 20 分钟以下。

在更为复杂的产品中,需要增加电池调节等功能以及用于能量平衡的双向转换器。对于此类应用,需要合适的 AC/DC 转换器并要求它们具有稳定的性能范围。

电池调节器(为铅电池充电、维护和防止硫酸化的计算机化设备),以及功率因数“前端”,将减少谐波失真(例如从 45% 到 5%),并显著提高系统功率因数性能。功率因数是一个指标,可衡量电能用于执行有用功的效率。

AC/DC 电动交通应用需要坚固可靠、经久耐用,具有广泛的环境适应能力,以及密封和防风雨、功率因数校正 (PFC)、电池充电/调节能力和 20kW 以上的额定值。

大功率 AC/DC 转换器可用于一些特殊应用。一个典型的实例是具有下列功能的 AC/DC 转换器:能够在标称 44V 或 24V 三相交流输入下工作,输出电压分别为 28V 或 14V,功率分别为 2.8kW 和 1.4kW。

其他 AC/DC 设备是专门为电动交通市场设计的电池充电器/调节器,电动交通市场按低于 24V、24V、36V、48V 以及高于 48V 的电池电压进行分类。24V 细分市场通常占电动交通收入份额的 25% 以上。这些 AC/DC 转换器的额定功率分别为 2kW 和 1kW,具有出色的宽输出工作电压范围,用途广泛。

对于此细分市场中的一些 AC/DC 转换器,将提供模块化独立功率因数校正“前端”,其额定功率分别为 800W,1600W 和 3200 W(单相交流输入)和 4kW(三相交流输入)。其中一些 AC/DC 解决方案适用于 19" 机架安装、开放式框架或机箱安装设计。

此类 AC/DC 转换器在电动交通中的其他关键应用包括电动汽车和电动汽车充电系统,此外还有铁路和交通。

交通

交通” 是指电动汽车 (EV)、残疾代步车和其他小型移动车辆。这些车辆需要电池充电器以及车载电源管理来驱动电机和辅助设备。

该领域 AC/DC 转换器的主要特点是要求 AC/DC 电源解决方案坚固耐用、使用寿命长、可靠性高、环境要求高、防风雨和密封、功率因数校正 (PFC) 以及高达 20kW 及以上的额定功率。

在这个领域,电池调节和调节型双向功率转换器用于能量平衡。功率因数前端也是交通的一部分。

还提供适用于交通应用的工作平台电源设计,并可以根据客户对新设计和定制设计的要求调整该设计。

假冒伪劣产品的危害

假冒电源组件 会对设计领域造成严重破坏。这些设备可能出现故障,甚至完全失效。即便可以工作,仍然有可能造成人身伤害甚至引发火灾。这将严重损害供应商的声誉。

谨慎选择合作伙伴

强烈建议买家从知名制造商的全球分销商处购买他们的产品。

睿智的设计者和采购人员都知道,通过值得信赖的分销商和制造商购买电子组件和电源将是最佳途径,以确保功能完备、可靠安全的最终设计。

参考文献