What if?
The developed world is moving towards higher and higher levels of industrial automation, enabling more manufacturing output at lower costs with increased flexibility. Similarly, data centers, distribution warehouses and infrastructure facilities have a goal to operate ‘lights out’ with little manual intervention to reduce labor expense. ‘Industry 4.0’ or IIoT, the Industrial Internet of Things is an integral part of this, with intelligence pushed out to the ‘edges’ of processes so that monitoring and control is close to where it is needed for rapid reaction times, with an overarching network of communication between the monitoring and sensing elements and a central control. This might be via ‘the cloud’, through which data is aggregated, analysed and used as inputs to control algorithms, to optimise processes in a so-called smart factory.
The benefits of smart factories are wide-ranging, enabling low-cost products and services, while minimising energy consumption. But what if something goes wrong? We’re not talking about the ‘rise of the machines’ here, just a simple mechanical breakage or a spurious junction failure in a processor due to a direct hit from a cosmic ray, or one of a myriad of other ‘chance’ failure modes. A high percentage of electrical infrastructure worldwide is greater than 25 years old, so increasing failure rates are a concern. Therefore, system designers include redundancy for critical system elements to cover single or even double failures, depending on the application and rate the components used with wide margins for a more reliable operation. However, ‘wear and tear’ is a fact of life in mechanical components and even in electronics, where capacitors dry out, surge limiters become compromised and semiconductors accumulate crystal lattice defects over time.
The benefits of smart factories are wide-ranging, enabling low-cost products and services, while minimising energy consumption. But what if something goes wrong? We’re not talking about the ‘rise of the machines’ here, just a simple mechanical breakage or a spurious junction failure in a processor due to a direct hit from a cosmic ray, or one of a myriad of other ‘chance’ failure modes. A high percentage of electrical infrastructure worldwide is greater than 25 years old, so increasing failure rates are a concern. Therefore, system designers include redundancy for critical system elements to cover single or even double failures, depending on the application and rate the components used with wide margins for a more reliable operation. However, ‘wear and tear’ is a fact of life in mechanical components and even in electronics, where capacitors dry out, surge limiters become compromised and semiconductors accumulate crystal lattice defects over time.