The first step is that you are asked to complete a Project Summary which includes a description of your project, the selection of the functionalities it should contain, the intended application, which CAD Tool should the project be handed over to as well as the possibility to determine preferred and/or excluded parts and manufacturers. The Project Settings stage has two particularly important functions. Firstly, it causes the user to pause and take a step back to think about what they want to do before launching themselves blindly into the software.
Secondly, it informs the platform about the essential parameters of the project so that it can tailor its advice and replies to better suit the project goals. The CELUS Design Platform was developed with artificial intelligence in mind from the very beginning, acting in many ways like a senior design engineer offering advice and knowledge to the next generation of design engineers, who may be bursting with ideas but simply lack the experience gained over many decades in the business.
It was this “companion” approach to project design and planning that attracted RECOM to be a partner with CELUS from the beginning. We could see the advantages of artificial intelligence when used as a time-saving tool –eliminating the drudgery of collating information, generating BoMs (bills of materials), creating netlists, and trawling through endless datasheets trying to find essential information such as efficiency figures, dimensions, or tolerances – work that could be safely assigned to a tireless AI assistant without giving the design engineer a feeling that they were no longer in control. However, in the intervening years, AI has moved onwards, and it now offers more than just assistance – namely collaboration.
For example, with the CELUS platform, once past the Project Settings and into the design stage, the software uses a familiar drag-and-drop style to create the system architecture block diagram. However, the lines linking the functional blocks could be power or data or both. It is not necessary to specify the connection type because the system understands how the functional blocks need to be interconnected. However, if the circuit designer has a particular preference, say, for an I2C data connection because they already have an existing interface firmware solution for that data type, then they can simply tell the system that that is what they want. The system will then choose the requisite interface when the schematic is generated.
This integration of artificial intelligence in design platforms heralds a paradigm shift in PCB design because, unlike conventional PCB software, which merely flags design rule violations, AI-powered platforms offer a transformative approach. AI enables the system to leverage vast databases of information with ease, coupled with the intelligence to suggest informed solutions, effectively translating project goals into functional electronic designs. Therefore, RECOM is in the process of integrating our product portfolio, which includes around 30.000 parts into the CELUS knowledge database. By tapping into this wealth of data, the AI can make nuanced component selections tailored to the specific requirements of each project, thereby enhancing efficiency and optimizing performance.
Despite the undeniable potential of AI in PCB design, it's natural for engineers to harbor concerns about its implications. Questions about job security and accountability often arise: Will AI take my job away? Will I be blamed if it makes a mistake? However, rather than being a threat, an AI assistant can serve as a dependable partner, capable of explaining its decisions and providing valuable insights. Its ability to justify choices fosters a collaborative environment where less-experienced engineers can learn and grow without feeling intimidated. Moreover, AI's capacity for continual learning means that it evolves alongside its users, constantly improving and adapting to new challenges.
Secondly, it informs the platform about the essential parameters of the project so that it can tailor its advice and replies to better suit the project goals. The CELUS Design Platform was developed with artificial intelligence in mind from the very beginning, acting in many ways like a senior design engineer offering advice and knowledge to the next generation of design engineers, who may be bursting with ideas but simply lack the experience gained over many decades in the business.
It was this “companion” approach to project design and planning that attracted RECOM to be a partner with CELUS from the beginning. We could see the advantages of artificial intelligence when used as a time-saving tool –eliminating the drudgery of collating information, generating BoMs (bills of materials), creating netlists, and trawling through endless datasheets trying to find essential information such as efficiency figures, dimensions, or tolerances – work that could be safely assigned to a tireless AI assistant without giving the design engineer a feeling that they were no longer in control. However, in the intervening years, AI has moved onwards, and it now offers more than just assistance – namely collaboration.
For example, with the CELUS platform, once past the Project Settings and into the design stage, the software uses a familiar drag-and-drop style to create the system architecture block diagram. However, the lines linking the functional blocks could be power or data or both. It is not necessary to specify the connection type because the system understands how the functional blocks need to be interconnected. However, if the circuit designer has a particular preference, say, for an I2C data connection because they already have an existing interface firmware solution for that data type, then they can simply tell the system that that is what they want. The system will then choose the requisite interface when the schematic is generated.
This integration of artificial intelligence in design platforms heralds a paradigm shift in PCB design because, unlike conventional PCB software, which merely flags design rule violations, AI-powered platforms offer a transformative approach. AI enables the system to leverage vast databases of information with ease, coupled with the intelligence to suggest informed solutions, effectively translating project goals into functional electronic designs. Therefore, RECOM is in the process of integrating our product portfolio, which includes around 30.000 parts into the CELUS knowledge database. By tapping into this wealth of data, the AI can make nuanced component selections tailored to the specific requirements of each project, thereby enhancing efficiency and optimizing performance.
Despite the undeniable potential of AI in PCB design, it's natural for engineers to harbor concerns about its implications. Questions about job security and accountability often arise: Will AI take my job away? Will I be blamed if it makes a mistake? However, rather than being a threat, an AI assistant can serve as a dependable partner, capable of explaining its decisions and providing valuable insights. Its ability to justify choices fosters a collaborative environment where less-experienced engineers can learn and grow without feeling intimidated. Moreover, AI's capacity for continual learning means that it evolves alongside its users, constantly improving and adapting to new challenges.