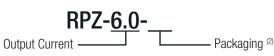
FEATURES

- Buck regulator with integrated shielded inductor
- 7V maximum input voltage
- Programmable 0.6-6.65V output voltage
- 6A maximum output current
- SCP, OCP, OTP, and UVLO protection
- 4mm x 6mm x 1.6mm QFN package
- Efficiency up to 90%
- 3 year warranty

Dimensions (LxWxH): 4.0 x 6.0 x 1.6mm (0.157 x 0.236 x 0.063inch) 0.1g (0.0002lbs)


DESCRIPTION

The RPZ-6.0 series is a cutting-edge non-isolated step-down power module meticulously crafted for electronic designs across a diverse spectrum of applications. This versatile module is poised to empower microcontrollers, sensors, embedded systems, portable electronics, IoT devices, consumer electronics, and medical devices with efficient and reliable power. The RPZ-6.0 is a buck regulator power module featuring an integrated shielded inductor, ensuring optimal performance and ease of use in various scenarios. With a maximum input voltage of 7V, this module strikes the perfect balance between adaptability and efficiency, providing a stable and reliable power source for a wide array of applications. Designed for flexibility, the RPZ-6.0 allows for programmable output voltages ranging from 0.6V to 6.65V. This adaptability makes it an ideal choice for applications with varying power requirements, enabling seamless integration into designs that demand precision and customization. Delivering a robust 6A maximum output current, the RPZ-6.0 is engineered to meet the dynamic needs of modern electronics. Safety is paramount, and this module is equipped with Short Circuit Protection (SCP), Overcurrent Protection (OCP), Overtemperature Protection (OTP), and Undervoltage Lockout (UVLO) features, ensuring the longevity and safeguarding of connected devices. Housed in a compact 4mm x 6mm x 1.6mm QFN package, the RPZ-6.0 is designed to optimize space efficiency without compromising performance. The integration of Flip-Chip technology enhances thermal management, ensuring the module operates at peak efficiency even in demanding conditions. With an efficiency rating of up to 90%, the RPZ-6.0 not only meets but exceeds industry standards. This high efficiency not only minimizes energy consumption but also reduces heat generation, contributing to the overall reliability and extended lifespan of the module.

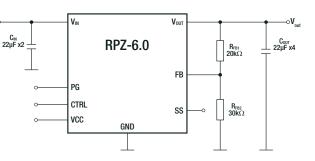
SELECTION GUIDE				
Part Number	Input Voltage Range [VDC]	Output Voltage Range [VDC]	Output Current max. [mA]	Efficiency ⁽¹⁾ typ. [%]
RPZ-6.0	2.75 - 7.0	0.6 - 6.65	6000	90

Note1: Efficiency is tested at V_{IN}= 6VDC, V_{OUT}= 3.3VDC full load at +25°C ambient

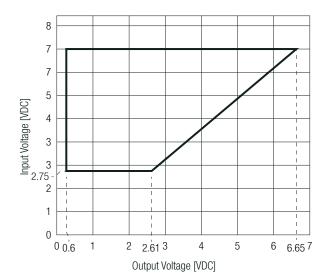
MODEL NUMBERING

Note2: Add suffix "-R" for tape and reel packaging

Add suffix "-CT" for bag packaging (refer to "Packaging information")


ABSOLUTE MAXIMUM RATINGS						
Parameter	Symbol	Condition	Min.	Тур.	Max.	
	V _{IN}		-0.3VDC		8VDC	
Absolute maximum voltage	V _{sw}		-0.3VDC		$V_{IN} + 0.7 VDC$	
	V _{BST}				V _{SW} + 4VDC	
		others	-0.3VDC		4VDC	
Maximum continuous power losses (3)		$T_{AMB} = +25^{\circ}C$			4.8W	
Junction Temperature	TJ				+150°C	
Lead Temperature					+260°C	

Note3: Exceeding maximum allowable power dissipation causes device to enter thermal shutdown which protects device from permanent damage.


· · · · · · · · · · · · · · · · · · ·		=5VDC, full load and after warm-up unless		_	
Parameter	Symbol	Condition	Min.	Тур.	Max.
Input Voltage Range	V _{IN}	refer to "Safe Operating Area"	2.75VDC		7VDC
Quiescent current	Ι _Q	V_{CTRL} = 2VDC, V_{FB} = 0.65VDC		105µA	150µA
Output Voltage Range	V _{OUT}	refer to "Safe Operating Area"	0.6VDC		6.65VDC
Standby current	l _{iN}	V_{CTRL} = 0VDC, T_{J} = 25°C		2μΑ	5μΑ
Feedback voltage	V	T_J= 25°℃	594mV	600mV	606mV
	V _{FB}	T_{J} = -40°C to 125°C	591mV	600mV	609mV
Feedback current		$V_{FB} = 0.7 VDC$		10nA	50nA
Valley Current Limit			6A	7A	
Short hiccup duty cycle				10%	
Maximum duty cycle				95%	
Minimum On Time				50ns	
Minimum Off Time				100ns	
Soft Start current			4µA	6µA	8µA

Typical Application V_{IN} = 2.75-7VDC, V_{OUT} = 1VDC, I_{OUT} = 6A

٧... o

Safe Operating Area

CTRL OPERATING CONDITIONS				
Parameter	Condition	Min.	Тур.	Max.
CTRL input logic low voltage		1.19VDC	1.23VDC	1.27VDC
CTRL input logic high voltage		0.96VDC	1VDC	1.04VDC
CTRL pin pull-down resistor			3.3MΩ	

POWER GOOD OPERATING CONDITIONS						
Parameter	Condition	Min.	Тур.	Max.		
UV rising threshold		0.85VDC	0.9VDC	0.95VDC		
UV falling threshold		0.75VDC	0.8VDC	0.85VDC		
OV rising threshold		1.15VDC	1.2VDC	1.25VDC		
OV falling threshold		1.05VDC	1.1VDC	1.15VDC		
Delay	both edges		50µs			
Sink current capability	sink current 1mA			0.4VDC		
Leakage current	$V_{PG}=5VDC$			10µA		

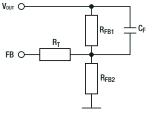
SWITCHING CHARACTERISTICS							
Parameter	Symbol	Condition	Min.	Тур.	Max.		
Switching Frequency	f _{sw}		0.9MHz	1.2MHz	1.6MHz		
Switch leakage	V _{SW}	V_{CTRL} = 0VDC, V_{SW} = 7VDC			5μΑ		

VCC CONDITIONS							
Parameter	Condition	Min.	Тур.	Max.			
VCC regulator	V _{IN} = 5VDC		3.5VDC				
VCC load regulation	I _{cc} = 5mA		3%				
VCC UVLO rising threshold		2.4VDC	2.5VDC	2.6VDC			
VCC UVLO threshold hysteresis			200mV				

PROTECTIONS			
Parameter	Con	dition	Value
Short Circuit Protection SCP			hiccup, auto recovery
Over Current Protection OCP			hiccup, auto recovery
Thermal shutdown	restart after cooldown	junction temperature	150°C typ.
mermai shuldown		hysteresis	20°C typ.

THERMAL OPERATING CONDITIONS (measured @ T _{AMB} = 25°C, nom. V _{IN} , full load and after warm-up unless otherwise stated)						
Parameter	Symbol	Condition	Min.	Тур.	Max.	
Operating Junction Temperature	TJ	refer to "Thermal Derating"	-40°C		+125°C	
Thermel Desistance (4)	R _{th_{JA}}	junction to ambient			25.99K/W	
Thermal Resistance ⁽⁴⁾	R _{th_{JC}}	junction to case			7.18K/W	

Note4: Test PCB= 6.4 x 6.4cm double sided PCB with 20oz copper, natural convection


ENVIRONMENTAL						
Parameter	Condition	Value				
Electrostatic discharge	human body model	2kVDC				
	charged device model	2kVDC				
Moisture Sensitive Level		Level 3, 245°C, 168hrs				

OUTPUT VOLTAGE SETTING

The RPZ-6.0 series offers the feature of trimming the output voltage by using external trim resistors (see **"Typical Application"**). The external resistor divider is used to set the output voltage. First, choose a value for R_{FB2} . R_{FB2} should be chosen carefully, as too small a value leads to considerable quiescent current loss while too great a value makes FB noise sensitive. It is recommended to choose a value between $2k\Omega$ and $100k\Omega$ for R_{FB2} . Typically, setting the current through R_{FB2} to less than 250μ A provides a good balance between system stability and minimal load loss. Then R_{FB1} can be calculated with Equation. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

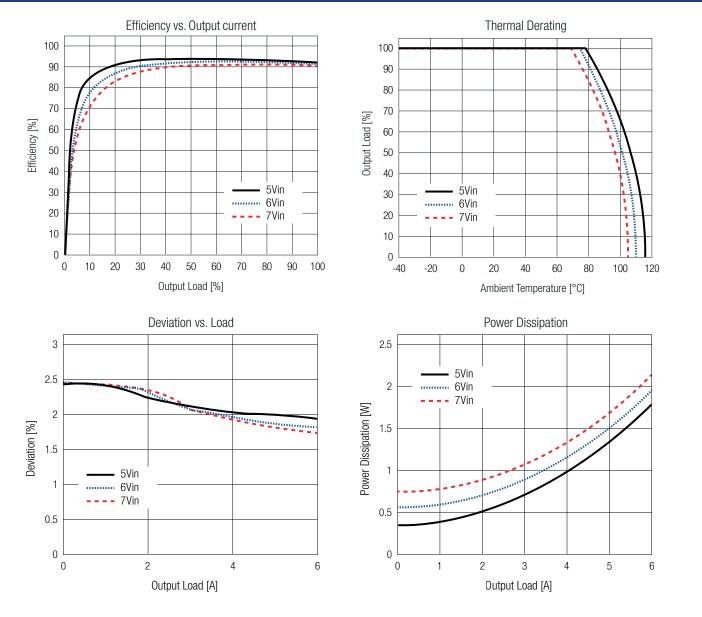
Feedback Network

Calculation:

Practical example with $V_{out} = 1.8VDC$

 $\mathbf{R}_{FB1} = \frac{Vout - Vref}{Vref} * R_{FB2}$

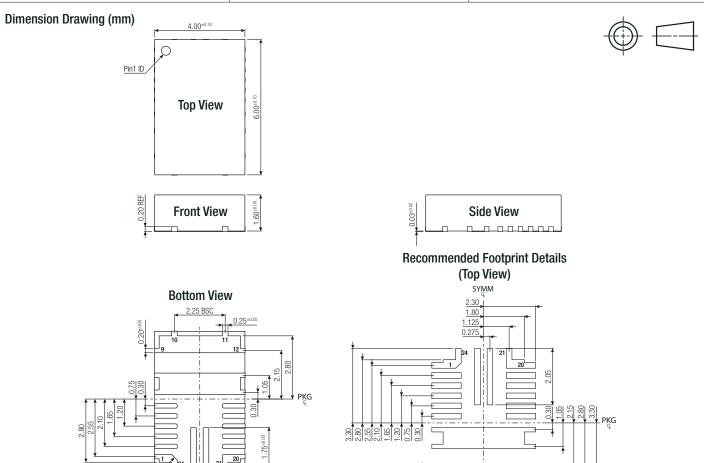
 $R_{FB1} = \frac{1.8V - 0.6V}{0.6V} * 10k\Omega = 20k\Omega$


Table below lists recommended resistor values for common V_{OUT} :

5 E C (

DC/DC Converter

Vo	DUT [VDC]	R _{FB1} [Ω]	R _{FB2} [Ω]	С _ғ [рF]	R _T [Ω]
	1.0	6k67			
	1.2	10k			
	1.5	15k	104	20	0
	1.8	20k	10k	39	0
	2.5	31k6			
	3.3	45k			


TYPICAL PERFORMANCE CHARACTERISTICS (measured @ T_{AMB} = 25°C, V_{OUT} = 3.3VDC)

SAFETY & CERTIFICATIONS		
Certificate Type (Safety)	Report Number	Standard
RoHS2		RoHS 2011/65EU + AM2015/863

DIMENSION & PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
Material	case	plastic		
Dimension (LxWxH)		4.0 x 6.0 x 1.6mm		
		0.157 x 0.236 x 0.063inch		
Weight		0.1g typ.		
weight		0.0002lbs		

Pad Information

Pin1 ID 0.25X 45°TYP

Pad #	Function	Description		
1, 2, 3, 4, 5, 24	PGND	System Ground. This pin is the reference ground of the regulated output voltage. Because of this, extra care must be taken when laying out the PCB. It is recommended to connect this pin to GND with copper and vias.		
6	VCC	Internal bias supply output.		
7, 8, 13, 14, 23	SW	Switch output. This pin can be left floating.		
9, 10, 11, 12	OUT	Output pin. Connect this pin to COUT.		
15	BST	Bootstrap. Internal capacitor connected between SW and BST pins to form a floating supply across the high-side switch driver.		
16	CTRL	Enable. Pull CTRL high to enable the part. When floating, CTRL is pulled down to FND by internal $3.3 { m M}\Omega$ resistor and is disabled.		
17	FB	Feedback. Sets the output voltage when connected to the tap of an external resistor divider that is connected between output and GND.		
18	AGND	Signal ground. AGND is not internally connected to PGND, so ensure that AGND is connected to PGND in the PCB layout.		
19	SS	Soft start. Connect a capacitor across SS and GND to set the soft-start time and avoid start-up inrush current. This pin includes an internal 22nF SS capacitor.		
20, 21	PG	Power good output. The output of this pin is an open-drain output. Its state changes UVP, OCP, OTP or OV occurs.		
22	VIN	Supply Voltage. The part operates from a 2.75V to 7V input rail. C1 is necessary to decouple the input rail. Use a wide PCB trace to make the connection.		

0.25^{±0.05}

0.275

SYMM

1.125

Tolerances: x.x= ± 0.1 mm x.xx= ± 0.05 mm

0.25

PACKAGING INFORMATION				
Parameter	Туре	Value		
Packaging Dimension (LxWxH)	Suffix -R: tape & reel (diameter + height)	Ø330.2 +		
	tape and reel (carton)	355.6 x 355.6 x 50.8mm		
	Suffix -CT: moisture barrier bag	100 x 100 x 30mm		
Packaging Quantity	Suffix -R: tape & reel	500pcs		
	Suffix -CT: moisture barrier bag	10pcs		
Tape Width		12mm		
Storage Temperature Range		-65°C to +150°C		
Storage Humidity	non-condensing	60% RH max.		

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.